\[\left\{ \begin{matrix} \frac{x^{2} - 4x + 4}{x + 2} \leq 0\ \ \\ x^{2} + 2x - 15 \leq 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} \frac{(x - 2)^{2}}{x + 2} \leq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (x + 5)(x - 3) \leq 0 \\ \end{matrix} \right.\ \]
\[x^{2} + 2x - 15 =\]
\[= x^{2} + 5x - 3x - 15 =\]
\[= x(x + 5) - 3(x + 5) =\]
\[= (x + 5)(x - 3)\]
\[Ответ:\lbrack - 5; - 2) \cup \left\{ 2 \right\}.\]