\[\left( 7 - 2\sqrt{10} \right)x > \sqrt{5} - \sqrt{2}\]
\[\left( \sqrt{5} - \sqrt{2} \right)^{2}x > \sqrt{5} - \sqrt{2}\]
\[\left( \sqrt{5} - \sqrt{2} \right)x > 1\]
\[x > \frac{1}{\sqrt{5} - \sqrt{2}}\]
\[\frac{1}{\sqrt{5} - \sqrt{2}} =\]
\[= \frac{\sqrt{5} + \sqrt{2}}{\left( \sqrt{5} - \sqrt{2} \right)\left( \sqrt{5} + \sqrt{2} \right)} =\]
\[= \frac{\sqrt{5} + \sqrt{2}}{5 - 2} = \frac{\sqrt{5} + \sqrt{2}}{3}\]
\[x > \frac{\sqrt{5} + \sqrt{2}}{3}\]
\[Ответ:\left( \frac{\sqrt{5} + \sqrt{2}}{3}; + \infty \right).\]