\[\frac{x^{2} - 3ax + 2}{x + 3} = 0;\ \ \ \ x \neq - 3\]
\[x^{2} - 3ax + 2 = 0\]
\[D = ( - 3a)^{2} - 4 \cdot 1 \cdot 2 = 9a^{2} - 8\]
\[Уравнение\ имеет\ \]
\[единственный\ корень\ \]
\[при\ D = 0.\]
\[9a^{2} - 8 = 0\]
\[9a^{2} = 8\]
\[a^{2} = \frac{8}{9}\]
\[a = \pm \frac{2\sqrt{2}}{3}\]
\[Ответ:\ при\ a = \pm \frac{2\sqrt{2}}{3}.\]