Вопрос:

Для каждого значения а решите уравнение: (x^2-(a+1)x+3a-6)/(x-3)=0.

Ответ:

\[\frac{x^{2} - (a + 1)x + 3a - 6}{x - 3} = 0;\ \ \]

\[x \neq 3\]

\[x^{2} - (a + 1)x + 3a - 6 = 0\]

\[D = (a + 1)^{2} - 4 \cdot 1 \cdot (3a - 6) =\]

\[= a^{2} + 2a + 1 - 12a + 24 =\]

\[= a^{2} - 10a + 25 = (a - 5)^{2}\]

\[При\ D = 0:\]

\[(a - 5)^{2} = 0\]

\[a - 5 = 0\]

\[a = 5.\]

\[1)\ D = 0;\ \ a = 5:\]

\[x = \frac{5 + 1 \pm |5 - 5|}{2} = \frac{6}{2} =\]

\[= 3\ (не\ подходит).\]

\[2)\ D > 0;a > 5:\]

\[x_{1} = \frac{a + 1 + a - 5}{2} =\]

\[= \frac{2a - 4}{2} = a - 2;\]

\[x_{2} = \frac{a + 1 - a + 5}{2} =\]

\[= \frac{6}{2} = 3\ \ (не\ подходит).\]


Похожие