\[y = \frac{x^{2} - 6x + 8}{\sqrt{x^{2} - 4x + 4}} =\]
\[= \frac{(x - 4)(x - 2)}{\sqrt{(x - 2)^{2}}} =\]
\[= \frac{(x - 4)(x - 2)}{|x - 2|};\ \ \ \ \ x \neq 2\]
\[x^{2} - 6x + 8 = 0\]
\[D = ( - 6)^{2} - 4 \cdot 1 \cdot 8 =\]
\[= 36 - 32 = 4;\ \ \ \sqrt{D} = 2.\]
\[x_{1} = \frac{6 + 2}{2} = \frac{8}{2} = 4;\ \ \]
\[\ x_{2} = \frac{6 - 2}{2} = \frac{4}{2} = 2.\]