Вопрос:

Определите номер наибольшего члена последовательности, заданной формулой n-го члена c_n=-n^2+33 1/3 n+23.

Ответ:

\[c_{n} = - n^{2} + 33\frac{1}{3}n + 23 =\]

\[= - \left( n^{2} - 33\frac{1}{3}n - 23 \right) =\]

\[= - \left( \left( n - 16\frac{2}{3} \right)^{2} - 300\frac{7}{9} \right) =\]

\[= 300\frac{7}{9} - \left( n - 16\frac{2}{3} \right)^{2} \Longrightarrow\]

\[\Longrightarrow n = 16\ \ или\ \ n = 17.\]

\[c_{16} = 300\frac{7}{9} - \left( 16 - 16\frac{2}{3} \right)^{2} =\]

\[= 300\frac{7}{9} - \left( - \frac{2}{3} \right)^{2} =\]

\[= 300\frac{7}{9} - \frac{4}{9} = 300\frac{1}{3}\]

\[c_{17} = 300\frac{7}{9} - \left( 17 - 16\frac{2}{3} \right)^{2} =\]

\[= 300\frac{7}{9} - \left( \frac{1}{3} \right)^{2} =\]

\[= 300\frac{7}{9} - \frac{1}{9} = 300\frac{2}{3}\]

\[300\frac{2}{3} > 300\frac{1}{3} \Longrightarrow\]

\[\Longrightarrow c_{17} - наибольший.\]

\[Ответ:17.\]


Похожие