\[Пусть\ x\ \frac{км}{ч} - скорость\ \]
\[легкового\ автомобиля;\]
\[t\ часов - время\ встречи.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} (t + 1) \cdot 40 = tx\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ t + 1 = \frac{300 - (t + 1) \cdot 40}{x} \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} (t + 1) \cdot 40 = tx\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ t + 1 = \frac{300 - 40t - 40}{x} \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} (t + 1) \cdot 40 = tx\ \ \ \\ t + 1 = \frac{260 - 40t}{x} \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} (t + 1) \cdot 40 = tx \\ x = \frac{260 - 40t}{t + 1}\text{\ \ \ } \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\left\{ \begin{matrix} (t + 1) \cdot 40 = \frac{t(260 - 40t)}{t + 1} \\ x = \frac{260 - 40t}{t + 1}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[4t^{2} + 8t + 4 - 26t + 4t^{2} = 0\]
\[8t² - 18t + 4 = 0\ \ \ |\ :2\]
\[4t^{2} - 9t + 2 = 0\]
\[D = 81 - 32 = 49\]
\[t_{1} = \frac{9 - 7}{8} = \frac{1}{4}\ (ч) - время\ \]
\[встречи.\ \ \]
\[t_{2} = \frac{9 + 7}{8} = 2\ (ч) - время\ \]
\[встречи.\]
\[\frac{260 - 40 \cdot \frac{1}{4}}{\frac{1}{4} + 1} = 250 \cdot \frac{4}{5} =\]
\[= 200 - не\ может\ быть.\]
\[\frac{260 - 40 \cdot 2}{2 + 1} = \frac{180}{3} =\]
\[= 60\ \left( \frac{км}{ч} \right) - скорость\ \]
\[первого\ автомобиля.\]
\[Ответ:60\frac{км}{ч}.\]