Вопрос:

7. Найдите значение выражения $\frac{x^2 + 4x + 4}{x^2 - 25} : \frac{2x + 4}{6x + 30}$ при $x = 3$.

Ответ:

Сначала упростим выражение: $\frac{x^2 + 4x + 4}{x^2 - 25} : \frac{2x + 4}{6x + 30} = \frac{(x+2)^2}{(x-5)(x+5)} : \frac{2(x+2)}{6(x+5)} = \frac{(x+2)^2}{(x-5)(x+5)} \cdot \frac{6(x+5)}{2(x+2)} = \frac{(x+2) \cdot 6}{2(x-5)} = \frac{3(x+2)}{x-5}$ Теперь подставим $x = 3$: $\frac{3(3+2)}{3-5} = \frac{3 \cdot 5}{-2} = -\frac{15}{2} = -7.5$ Ответ: **-7.5**
Убрать каракули
Смотреть решения всех заданий с фото

Похожие