\[\left\{ \begin{matrix} 2x - ay = a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (a - 3)x - (a - 2)y = 2 \\ \end{matrix} \right.\ \]
\[\frac{2}{a - 3} = \frac{a}{a - 2} = \frac{a}{2}\]
\[\frac{2}{a - 3} = \frac{a}{a - 2}\]
\[2 \bullet (a - 2) = a(a - 3)\]
\[2a - 4 = a^{2} - 3a\]
\[a^{2} - 5a + 4 = 0\]
\[D = ( - 5)^{2} - 4 \cdot 1 \cdot 4 =\]
\[= 25 - 16 = 9\]
\[a_{1} = \frac{5 + \sqrt{9}}{2} = \frac{5 + 3}{2} = \frac{8}{2} = 4\]
\[a_{2} = \frac{5 - \sqrt{9}}{2} = \frac{5 - 3}{2} = \frac{2}{2} = 1\]
\[\frac{a}{a - 2} = \frac{a}{2}\text{\ \ \ }\]
\[\ a = 4:\ \]
\[\frac{4}{4 - 2} = \frac{4}{2}\text{\ \ \ \ }\]
\[\ \frac{4}{2} = \frac{4}{2}\text{\ \ \ \ }\]
\[\ 2 = 2.\]
\[a = 1:\ \ \ \]
\[\frac{1}{1 - 2} = \frac{1}{2}\text{\ \ \ \ }\]
\[\ \frac{1}{- 1} = \frac{1}{2}\text{\ \ \ \ \ }\]
\[- 1
eq \frac{1}{2}\]
\[Ответ:\ \ a = 4.\]