Вопрос:

Найдите сумму четырёх первых членов геометрической прогрессии (bn) со знаменателем q, если: b2=12, b5=324.

Ответ:

\[b_{2} = 12;\ \ b_{5} = 324:\]

\[\left\{ \begin{matrix} b_{1}q = 12\ \ \ \ \\ b_{1}q^{4} = 324 \\ \end{matrix}\text{\ \ \ \ \ } \right.\ \text{\ \ \ }\]

\[\left\{ \begin{matrix} q^{3} = 27 \\ b_{1} = \frac{12}{q} \\ \end{matrix}\text{\ \ \ \ \ \ \ \ \ } \right.\ \]

\[\left\{ \begin{matrix} q = 3\ \ \\ b_{1} = 4 \\ \end{matrix} \right.\ \]

\[S_{4} = \frac{b_{1} \cdot \left( q^{4} - 1 \right)}{q - 1} =\]

\[= \frac{4 \cdot (81 - 1)}{2} = 2 \cdot 80 = 160.\]

\[Ответ:160.\]

Похожие