Вопрос:

Найдите пятый член и сумму четырех первых членов геометрической прогрессии, если b_1=27, а знаменатель q=1/3.

Ответ:

\[b_{1} = 27;\ \ q = \frac{1}{3};\]

\[b_{5} = b_{1} \cdot (q)^{4} = 27 \cdot \left( \frac{1}{3} \right)^{4} =\]

\[= 3^{3} \cdot \frac{1}{3^{4}} = \frac{1}{3};\]

\[S_{4} = \frac{b_{1}\left( q^{4} - 1 \right)}{q - 1} =\]

\[= \frac{27 \cdot \left( \left( \frac{1}{3} \right)^{4} - 1 \right)}{\frac{1}{3} - 1} =\]

\[= \frac{27 \cdot \left( \frac{1}{81} - 1 \right)}{- \frac{2}{3}} =\]

\[= 27 \cdot \left( - \frac{80}{81} \right) \cdot \left( - \frac{3}{2} \right) = \frac{80}{2} = 40.\]

Похожие