\[\frac{3}{x + 2} - \frac{3}{2 - x} = \frac{2}{x² - 4}\]
\[ОДЗ:\ \ x \neq \pm 2\]
\[\frac{3}{x + 2} + \frac{3}{x - 2} = \frac{2}{x² - 4}\]
\[\frac{3 \cdot (x - 2) + 3 \cdot (x + 2)}{x^{2} - 4} = \frac{2}{x^{2} - 4}\]
\[3x - 6 + 3x + 6 = 2\]
\[6x = 2\]
\[x = \frac{2}{6}\]
\[x = \frac{1}{3}\]
\[Ответ:\ \ x = \frac{1}{3}.\]