Вопрос:

Найдите координаты точек пересечения графиков функций: y=2x-1 и y=(14-x)/(x+2).

Ответ:

\[y = 2x - 1\ \ \ и\ \ \ y = \frac{14 - x}{x + 2}\]

\[\frac{14 - x}{x + 2} = 2x - 1\]

\[ОДЗ:x + 2 \neq 0\]

\[\ \ \ \ \Longrightarrow \ \ \ x \neq - 2\]

\[14 - x = (2x - 1)(x + 2)\]

\[14 - x = 2x^{2} + 4x - x - 2\]

\[2x² + 4x - 16 = 0\ \ \ \ |\ :2\]

\[x^{2} + 2x - 8 = 0\]

\[x_{1} + x_{2} = - 2\]

\[x_{1} \cdot x_{2} = - 8 \Longrightarrow x_{1} = - 4;\ \ \]

\[x_{2} = 2\]

\[Ответ:( - 4; - 9);\ \ (2;3).\]

Похожие