\[\frac{x\sqrt{5}}{x\sqrt{5} - \sqrt{3}} = \frac{x\sqrt{3}}{\sqrt{5} - x\sqrt{3}}\]
\[ОДЗ:\]
\[1)\ x\sqrt{5} - \sqrt{3}
eq 0\]
\[x\sqrt{5}
eq \sqrt{3}\]
\[x
eq \frac{\sqrt{3}}{\sqrt{5}}
eq \frac{\sqrt{15}}{5}\]
\[2)\ \sqrt{5} - x\sqrt{3}
eq 0\]
\[x\sqrt{3}
eq \sqrt{5}\]
\[x
eq \frac{\sqrt{5}}{\sqrt{3}}
eq \frac{\sqrt{15}}{3}\]
\[x\sqrt{5}\left( \sqrt{5} - x\sqrt{3} \right) =\]
\[= x\sqrt{3}\left( x\sqrt{5} - \sqrt{3} \right)\]
\[5x - \sqrt{15}x^{2} = \sqrt{15}x^{2} - 3x\]
\[8x = 2\sqrt{15}x^{2}\]
\[4x = \sqrt{15}x^{2}\]
\[4x - \sqrt{15}x^{2} = 0\]
\[x\left( 4 - \sqrt{15}x \right) = 0\]
\[x = 0\ \ \ \ \ 4 - \sqrt{15}x = 0\]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\sqrt{15}x = 4\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = \frac{4}{\sqrt{15}} = \frac{4\sqrt{15}}{15}\]
\[Ответ:x = 0\ \ \ и\ \ x = \frac{4\sqrt{15}}{15}.\]