\[x^{2} + 21x + a = 0\ \ \]
\[x_{1}\ :x_{2} = 4\ :3 \Longrightarrow x_{1} = \frac{4}{3}x_{2}.\]
\[\left\{ \begin{matrix} x_{1} + x_{2} = - 21\ \ \ \ (1) \\ x_{1} \cdot x_{2} = a\ \ \ \ \ \ \ \ \ \ \ \ (2) \\ \end{matrix} \right.\ \]
\[(1)\text{\ \ }\frac{4}{3}x_{2} + x_{2} = - 21\]
\[\frac{7}{3}x_{2} = - 21\]
\[x_{2} = - 21 \cdot \frac{3}{7}\]
\[x_{2} = - 9.\]
\[(2)\ x_{1} = \frac{4}{3} \cdot ( - 9) = - 12.\]
\[3)\ - 12 \cdot ( - 9) = a\]
\[a = 108.\]
\[Ответ:\ \ x_{1} = - 12;\ \ x_{2} = - 9;\ \ \]
\[a = 108.\]