Вопрос:

Известно, что х_1 и х_2 — корни уравнения х^2-7х-3=0. Не решая уравнения, найдите значение выражения: (x_1-x_2)^2.

Ответ:

\[x^{2} - 7x - 3 = 0\ \]

\[x_{1} + x_{2} = 7;\ \]

\[x_{1} \cdot x_{2} = - 3\]

\[\frac{1}{x_{1}^{2}} + \frac{1}{x_{2}^{2}} = \frac{x_{1}^{2} + x_{2}^{2}}{x_{1}^{2} \cdot x_{2}^{2}} =\]

\[= \frac{\left( x_{1} + x_{2} \right)^{2} - 2x_{1}x_{2}}{\left( x_{1} \cdot x_{2} \right)^{2}} =\]

\[= \frac{7^{2} - 2 \cdot ( - 3)}{( - 3)^{2}} = \frac{49 + 6}{9} =\]

\[= \frac{55}{9} = 6\frac{1}{9}\]

Похожие