\[скорость\ грузового.\ \]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} 2,5x + 2,5y = 300 \\ \frac{300}{y} - \frac{300}{x} = 3\frac{3}{4}\text{\ \ \ \ } \\ \end{matrix}\text{\ \ \ \ \ \ \ \ } \right.\ \]
\[\left\{ \begin{matrix} 5x + 5y = 600\ \ \ \ \ \ \ \ \ \ \ \ \\ 300x - 300y = \frac{15}{4}\text{xy} \\ \end{matrix}\text{\ \ \ \ \ \ \ } \right.\ \]
\[\left\{ \begin{matrix} x + y = 120\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 80x - 80y - xy = 0 \\ \end{matrix}\text{\ \ \ \ \ } \right.\ \]
\[\left\{ \begin{matrix} x = 120 - y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 9600 - 80y - 120y + y^{2} = 0 \\ \end{matrix}\text{\ \ \ \ \ } \right.\ \]
\[\left\{ \begin{matrix} x = 120 - y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y^{2} - 280y + 9600 = 0 \\ \end{matrix} \right.\ \]
\[y² - 280y + 9600 = 0\]
\[D = 78\ 400 - 38\ 400 = 40\ 000\]
\[y_{1} = \frac{280 - 200}{2} = 40\ \ \ \ \]
\[y_{2} = \frac{280 + 200}{2} =\]
\[= 240 - не\ удовлетворяет.\]
\[Ответ:80\ \frac{км}{ч;\ \ 40\ \frac{км}{ч.}}\]