Вопрос:

Две точки двигаются по окружности в одном направлении. Первая точка проходит окружность на 2 с быстрее второй и догоняет её через каждые 12 с. За какое время каждая точка проходит окружность?

Ответ:

\[Встреча\ произошла\ через\ t\ ч.\]

\[Составим\ систему\ уравнений:\]

\[\left\{ \begin{matrix} tx + 6y = 9 \\ \frac{36}{60}y = tx\ \ \ \ \ \\ 1\frac{21}{60}x = ty\ \ \\ \end{matrix}\text{\ \ \ \ \ \ \ \ } \right.\ \]

\[\left\{ \begin{matrix} tx + ty = 9 \\ \frac{3}{5}y = tx\ \ \ \ \ \ \ \\ \frac{27}{20}x = ty\ \ \ \\ \end{matrix}\text{\ \ \ \ \ \ \ \ \ \ \ } \right.\ \]

\[\left\{ \begin{matrix} tx + 6y = 9 \\ \frac{3y \cdot 20}{5 \cdot 27x} = \frac{x}{y} \\ \end{matrix} \right.\ \text{\ \ \ \ }\]

\[\left\{ \begin{matrix} tx + ty = 9 \\ \frac{4}{9} \cdot \frac{y}{x} = \frac{x}{y}\text{\ \ \ \ \ } \\ \end{matrix} \right.\ \]

\[4y^{2} = 9x^{2}\]

\[2y = 3x\ \ \]

\[\ y = \frac{3}{2}x;\ \ \ \ \ \ \ x > 0;\ \ \ y > 0\]

\[tx + \frac{3}{2}tx = 9\]

\[\frac{5}{2}tx = 9\]

\[tx = \frac{18}{5}\]

\[\frac{3}{5}y = \frac{18}{5}\]

\[y = \frac{18 \cdot 5}{5 \cdot 3} = 6.\ \ \ \]

\[ty = 9 - \frac{18}{5} = \frac{27}{5}.\]

\[\frac{27}{20}x = \frac{27}{5};\ \ \ \ \ x = \frac{27 \cdot 20}{5 \cdot 27} = 4.\]

\[t = \frac{9}{x + y} = \frac{9}{4 + 6} = \frac{9}{10}\ ч =\]

\[= \frac{54}{60}\ ч = 54\ мин.\]


Похожие