\[x² + y² \geq 2 \cdot (x + y - 1)\]
\[x^{2} + y^{2} - 2x - 2y + 2 \geq 0\]
\[\left( x^{2} - 2x + 1 \right) + \left( y^{2} - 2y + 1 \right) \geq 0\]
\[(x - 1)^{2} + (y - 1)^{2} \geq 0\]
\[При\ любом\ значении\ x\ и\ y:\]
\[(x - 1)^{2} + (y - 1)^{2} \geq 0,\ \]
\[так\ \ как\ \ (x - 1)^{2} \geq 0\ \ \ и\ \ \]
\[(y - 1)^{2} \geq 0.\]