Вопрос:

Для любого числа х € R докажите справедливость неравенства: (x^2-6x)/5+5/(x^2-6x+10)>=0 найдите значения x, при которых левая часть неравенства равна правой.

Ответ:

\[\frac{x^{2} - 6x}{5} + \frac{5}{x^{2} - 6x + 10} \geq 0\]

\[Пусть\ t = x^{2} - 6x:\]

\[\frac{t}{5} + \frac{5}{t + 10} \geq 0\]

\[\frac{t(t + 10) + 25}{5 \cdot (t + 10)} \geq 0\]

\[\frac{t^{2} + 10t + 25}{5 \cdot (t + 10)} \geq 0\]

\[\frac{(t + 5)^{2}}{5 \cdot (t + 10)} \geq 0\]

\[\frac{\left( x^{2} - 6x + 5 \right)^{2}}{5 \cdot \left( x^{2} - 6x + 10 \right)} \geq 0\]

\[x^{2} - 6x + 5 = 0\]

\[x_{1} = 5;\ \ \ x_{2} = 1.\]

\[Ответ:\ \ x = 5;x = 1.\]


Похожие