Вопрос:

Для любого числа х € R докажите справедливость неравенства: x^2+6x+10>=2|x+3| найдите значения x, при которых левая часть неравенства равна правой.

Ответ:

\[x^{2} + 6x + 10 \geq 2|x + 3|\]

\[Если\ x \geq - 3:\]

\[x^{2} + 6x + 10 - 2 \cdot (x + 3) \geq 0\]

\[x^{2} + 6x + 10 - 2x - 6 \geq 0\]

\[x^{2} + 4x + 4 \geq 0\]

\[(x + 2)^{2} \geq 0\]

\[x - любое\ число\]

\[\Longrightarrow (x + 2)^{2} = 0;\ \ \ x = - 2.\]

\[Если\ x < - 3:\]

\[x^{2} + 6x + 10 + 2 \cdot (x + 3) \geq 0\]

\[x^{2} + 6x + 10 + 2x + 6 \geq 0\]

\[x^{2} + 8x + 16 \geq 0\]

\[(x + 4)^{2} \geq 0\]

\[x - любое\ число\]

\[\Longrightarrow (x + 4)^{2} = 0;\ \ \ \ x = - 4.\]

\[Ответ:\ x = - 2;\ x = - 4.\]


Похожие