\[\frac{x^{2} - (a + 2)x + 2a}{a - 3} = 0;\ \ x \neq 3\]
\[x^{2} - (a + 2)x + 2a = 0\]
\[D = (a + 2)^{2} - 4 \cdot 1 \cdot 2a =\]
\[= a^{2} + 4a + 4 - 8a =\]
\[= a^{2} - 4a + 4 = (a - 2)²\]
\[При\ D = 0:\]
\[(a - 2)^{2} = 0\]
\[a - 2 = 0\]
\[a = 2.\]
\[1)\ D = 0;\ \ a = 2:\]
\[x = \frac{2 + 2 \pm |2 - 2|}{2} = \frac{4}{2} = 2.\]
\[2)\ D > 0;a > 2:\]
\[x_{1} = \frac{a + 2 + a - 2}{2} = - \frac{2a}{2} = a;\ \]
\[x_{2} = \frac{a + 2 - a + 2}{2} = \frac{4}{2} = 2.\]
\[3)\ \ D < 0 \Longrightarrow корней\ нет.\]