\[3x^{2} + mx + 2 = 0;\ \ x_{1} = - \frac{1}{6}\]
\[\left\{ \begin{matrix} x_{1} + x_{2} = - \frac{m}{3} \\ x_{1} \cdot x_{2} = \frac{2}{3}\text{\ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[1)\ - \frac{1}{6} \cdot x_{2} = \frac{2}{3}\]
\[x_{2} = - \frac{2}{3} \cdot \frac{6}{1} = - 4.\]
\[2)\ - \frac{1}{6} + ( - 4) = - \frac{m}{3}\text{\ \ }\]
\[- 4\frac{1}{6} = - \frac{m}{3}\ \]
\[- \frac{25}{6} = - \frac{m}{3}\ \]
\[m = \frac{25}{6} \cdot 3 = \frac{25}{2} = 12,5.\]
\[Ответ:\ \ x_{2} = - 4;\ \ m = 12,5.\]