Используем теорему синусов:
\[\frac{AB}{\sin C} = 2R\]
а) Угол (C = 45^{\circ}), (AB = 6\sqrt{2}). Тогда:
\[2R = \frac{6\sqrt{2}}{\sin 45^{\circ}} = \frac{6\sqrt{2}}{\frac{\sqrt{2}}{2}} = 6\sqrt{2} \cdot \frac{2}{\sqrt{2}} = 12\]
(R = 6).
б) Угол (C = 30^{\circ}), (R = 10). Тогда:
\[\frac{AB}{\sin 30^{\circ}} = 2 \cdot 10\]
\[AB = 20 \cdot \sin 30^{\circ} = 20 \cdot \frac{1}{2} = 10\]
в) Угол (C = 60^{\circ}), (AB = 8\sqrt{3}). Тогда:
\[2R = \frac{8\sqrt{3}}{\sin 60^{\circ}} = \frac{8\sqrt{3}}{\frac{\sqrt{3}}{2}} = 8\sqrt{3} \cdot \frac{2}{\sqrt{3}} = 16\]
(R = 8).
г) Угол (C = 150^{\circ}), (R = 5). Тогда:
\[\frac{AB}{\sin 150^{\circ}} = 2 \cdot 5\]
\[AB = 10 \cdot \sin 150^{\circ} = 10 \cdot \frac{1}{2} = 5\]
Убрать каракули