\[\boxed{\mathbf{2.560}}\]
\[\frac{n}{7,4 - 6,2} + \frac{n}{1,3 + 5,9} =\]
\[= \frac{n}{1,2} + \frac{n}{7,2} = \frac{10n^{\backslash 6}}{12} + \frac{10n}{72} =\]
\[= \frac{60n}{72} + \frac{10n}{72} =\]
\[= \frac{70n}{72} = \frac{35}{36}n\]
\[\textbf{а)}\ n = 2\frac{1}{5} + 3\frac{4}{7} = 2\frac{7}{35} + 3\frac{20}{35} =\]
\[= 5\frac{27}{35} = \frac{202}{35}:\]
\[\frac{35}{36} \cdot \frac{202}{35} = \frac{101}{18} = 5\frac{11}{18}.\]
\[\textbf{б)}\ n = 1,2 \cdot (1 - 0,4) =\]
\[= 1,2 \cdot 0,6 = 0,72 = \frac{72}{100} = \frac{18}{25}:\]
\[\frac{35}{36} \cdot \frac{18}{25} = \frac{7}{2 \cdot 5} = \frac{7}{10} = 0,7.\]