\[\boxed{\mathbf{2.}\mathbf{416}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \left( 4\frac{3^{\backslash 3}}{4} - 3\frac{1}{12} \right) \cdot 4 =\]
\[= \left( 4\frac{9}{12} - 3\frac{1}{12} \right) \cdot 4 = 1\frac{8}{12} \cdot 4 =\]
\[= 1\frac{2}{3} \cdot 4 = \frac{5}{3} \cdot 4 = \frac{20}{3} = 6\frac{2}{3}\]
\[\textbf{б)}\ \left( 5\frac{14^{\backslash 2}}{19} - 5\frac{1}{38} \right) \cdot 38 =\]
\[= \left( 5\frac{28}{38} - 5\frac{1}{38} \right) \cdot 38 = \frac{27}{38} \cdot 38 =\]
\[= 27\]
\[\textbf{в)}\ 7\frac{4}{19} \cdot 6\frac{1}{4} + 4\frac{15}{19} \cdot 6\frac{1}{4} =\]
\[= 6\frac{1}{4} \cdot \left( 7\frac{4}{19} + 4\frac{15}{19} \right) =\]
\[= \left( 6 + \frac{1}{4} \right) \cdot 12 =\]
\[= 6 \cdot 12 + \frac{1}{4} \cdot 12 = 72 + 3 = 75\]
\[\textbf{г)}\ 3\frac{1}{14} \cdot 17\frac{7}{29} - 3\frac{1}{14} \cdot 3\frac{7}{29} =\]
\[= 3\frac{1}{14} \cdot \left( 17\frac{7}{29} - 3\frac{7}{29} \right) =\]
\[= \left( 3 + \frac{1}{14} \right) \cdot 14 =\]
\[= 3 \cdot 14 + \frac{1}{14} \cdot 14 = 42 + 1 =\]
\[= 43\]
\[\textbf{д)}\ \left( 1\frac{1^{\backslash 8}}{2} + 2\frac{1}{16} \right) \cdot 2\frac{10}{11} =\]
\[= \left( 1\frac{8}{16} + 2\frac{1}{16} \right) \cdot 2\frac{10}{11} =\]
\[= 3\frac{9}{16} \cdot \frac{32}{11} = \frac{57 \cdot 32}{16 \cdot 11} = \frac{114}{11} =\]
\[= 10\frac{4}{11}\]
\[\textbf{е)}\ 2\frac{2}{3} \cdot \left( 2\frac{1}{16} - 1\frac{7^{\backslash 2}}{8} \right) =\]
\[= 2\frac{2}{3} \cdot \left( 1\frac{17}{16} - 1\frac{14}{16} \right) = \frac{8}{3} \cdot \frac{3}{16} =\]
\[= \frac{1}{2} = 0,5\]