\[\boxed{\mathbf{2.}\mathbf{415}}\]
Пояснение.
Решение.
\[\textbf{а)}\ 8\frac{4}{15} \cdot 2 = \left( 8 + \frac{4}{15} \right) \cdot 2 =\]
\[= 8 \cdot 2 + \frac{4}{15} \cdot 2 = 16 + \frac{8}{15} =\]
\[= 16\frac{8}{15}\]
\[\textbf{б)}\ 3\frac{9}{14} \cdot 7 = \left( 3 + \frac{9}{14} \right) \cdot 7 =\]
\[= 3 \cdot 7 + \frac{9}{14} \cdot 7 = 21 + \frac{9}{2} =\]
\[= 21 + 4,5 = 25,5\]
\[\textbf{в)}\ 7\frac{4}{27} \cdot 5 = \left( 7 + \frac{4}{27} \right) \cdot 5 =\]
\[= 7 \cdot 5 + \frac{4}{27} \cdot 5 = 35 + \frac{20}{27} =\]
\[= 35\frac{20}{27}\]
\[\textbf{г)}\ 8 \cdot 2\frac{1}{8} = 8 \cdot \left( 2 + \frac{1}{8} \right) =\]
\[= 8 \cdot 2 + 8 \cdot \frac{1}{8} = 16 + 1 = 17\]
\[\textbf{д)}\ 5\frac{5}{6} \cdot 3 = \left( 5 + \frac{5}{6} \right) \cdot 3 =\]
\[= 5 \cdot 3 + \frac{5}{6} \cdot 3 = 15 + \frac{5}{2} =\]
\[= 15 + 2,5 = 17,5\]
\[\textbf{е)}\ 7\frac{7}{11} \cdot 11 = \left( 7 + \frac{7}{11} \right) \cdot 11 =\]
\[= 7 \cdot 11 + \frac{7}{11} \cdot 11 = 77 + 7 =\]
\[= 84\]