\[\boxed{\begin{matrix} \mathbf{Проверочная\ работа\ №2.\ Применение\ распределительного\ свойства} \\ \mathbf{умножения} \\ \end{matrix}}\]
\[\boxed{\mathbf{1.}}\]
\[\left( \frac{1}{3} + \frac{1}{6} \right) \cdot 6 = \frac{1}{3} \cdot 6 + \frac{1}{6} \cdot 6 =\]
\[= 2 + 1 = 3.\]
\[\boxed{\mathbf{2.}}\]
\[4\frac{3}{5} \cdot 5 = \left( 4 + \frac{3}{5} \right) \cdot 5 =\]
\[= 4 \cdot 5 + \frac{3}{5} \cdot 5 = 20 + 3 = 23.\]
\[\boxed{\mathbf{3.}}\]
\[\frac{5}{8}y + \frac{3}{8}y = \left( \frac{5}{8} + \frac{3}{8} \right)y = \frac{8}{8}y = y.\]
\[\boxed{\mathbf{4.}}\]
\[\frac{1^{\backslash 2}}{3}m - \frac{1}{6}m = \frac{2}{6}m - \frac{1}{6}m =\]
\[= \left( \frac{2}{6} - \frac{1}{6} \right)m = \frac{1}{6}\text{m.}\]
\[\boxed{\mathbf{5.}}\]
\[c - \frac{7}{9}c = \left( 1 - \frac{7}{9} \right)c = \frac{2}{9}\text{c.}\]
\[\boxed{\mathbf{6.}}\]
\[6\frac{1}{19} \cdot 7 > 42\]
\[\left( 6 + \frac{1}{19} \right) \cdot 7 = 6 \cdot 7 + \frac{1}{19} \cdot 7 =\]
\[= 42 + \frac{7}{19} = 42\frac{7}{19}\]
\[42\frac{7}{19} > 42.\]
\[Да.\]
\[\boxed{\mathbf{7.}}\]
\[\frac{3}{7}x + \frac{2}{7}x = 5\]
\[\frac{5}{7}x = 5\]
\[x = 5 \cdot \frac{7}{5}\]
\[x = 7.\]
\[Да.\]
\[\boxed{\mathbf{8.}}\]
\[4 \cdot 1\frac{3}{4} = 4 \cdot 1 + 4 \cdot \frac{3}{4} = 4 + 3 =\]
\[= 7 \neq 6.\]
\[Нет.\]