\[\boxed{\begin{matrix} \mathbf{Проверочная\ работа\ №1.\ Применение\ распределительного\ свойства} \\ \mathbf{умножения} \\ \end{matrix}}\]
\[\boxed{\mathbf{1.}}\]
\[30 \cdot 0,3 = 9.\]
\[\boxed{\mathbf{2.}}\]
\[6 \cdot 0,1 = 0,6.\]
\[\boxed{\mathbf{3.}}\]
\[18 \cdot \frac{4}{9} = 2 \cdot 4 = 8.\]
\[\boxed{\mathbf{4.}}\]
\[\left( \frac{3}{8} \right)^{2} = \frac{9}{64}.\]
\[\boxed{\mathbf{5.}}\]
\[\left( \frac{1}{3} + \frac{1}{7} \right) \cdot 21 = \frac{1}{3} \cdot 21 + \frac{1}{7} \cdot 21 =\]
\[= 7 + 3 = 10.\]
\[\boxed{\mathbf{6.}}\]
\[2\frac{1}{5} \cdot 3 = \frac{11}{5} \cdot 3 = \frac{33}{5} = 6\frac{3}{5}.\]
\[\boxed{\mathbf{7.}}\]
\[3\frac{6}{7} \cdot 3 + 1\frac{1}{7} \cdot 3 =\]
\[= 3 \cdot \left( 3\frac{6}{7} + 1\frac{1}{7} \right) = 3 \cdot 4\frac{7}{7} =\]
\[= 3 \cdot 5 = 15.\]
\[Да.\]
\[\boxed{\mathbf{8.}}\]
\[5 \cdot 3\frac{4}{5} = 5 \cdot 3 + 5 \cdot \frac{4}{5} = 15 + 4 =\]
\[= 19\]
\[Да.\]