\[\boxed{\mathbf{665\ (665)}\mathbf{.}\mathbf{\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Если\ отношение\ \frac{y}{x}\ равно\ \]
\[одному\ и\ тому\ же\ числу,\ то\ эти\ \]
\[две\ переменные\ прямо\ \]
\[пропорциональны.\]
\[1)\ да\]
\[\frac{2}{6} = \frac{6}{18} = \frac{7}{21} = \frac{9}{27} = \frac{1}{3}\]
\[2)\ нет\]
\[\frac{0.4}{0.8} = \frac{1}{2};\ \ \frac{1,6}{3,6} = \frac{16}{36} = \frac{4}{9};\ \frac{2,3}{4,6} = \frac{1}{2};\]
\[\ \frac{3,1}{6,2} = \frac{1}{2}\]
\[3)\ нет\]
\[\frac{1,2}{1} = 1,2;\ \frac{2,4}{2} = 1,2;\ \frac{6}{5} = 1,2;\ \]
\[\frac{9}{6} = \frac{3}{2} = 1,5\]
\[4)\ да\]
\[1\ :\frac{2}{3} = \frac{3}{2};\ \ \]
\[\frac{3}{4}\ :\frac{1}{2} = \frac{3}{4} \cdot 2 = \frac{3}{2};\ \]
\[\frac{5}{8}\ :\frac{5}{12} = \frac{5}{8} \cdot \frac{12}{5} = \frac{12}{8} = \frac{3}{2};\]
\[\frac{9}{16}\ :\frac{3}{8} = \frac{9}{16} \cdot \frac{8}{3} = \frac{3}{2}\text{.\ }\]