\[\boxed{\mathbf{360\ (}\mathbf{н}\mathbf{).}\mathbf{\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{3^{\backslash 9}}{8}x + \frac{4^{\backslash 8}}{9}x - \frac{5^{\backslash 6}}{12}x =\]
\[= \frac{27 + 32 - 30}{72}x = \frac{29}{72}x\]
\[x = 3\frac{3}{29} = \frac{90}{29}:\]
\[2)\ \frac{9^{\backslash 3}}{10}c - \frac{2^{\backslash 2}}{15}c - \frac{3^{\backslash 6}}{5}c =\]
\[= \frac{27 - 4 - 18}{30}c = \frac{5}{30}c = \frac{1}{6}c\]
\[c = 2,4 = \frac{24}{10} = \frac{12}{5}:\]
\[3)\ 3\frac{3^{\backslash 3}}{5}y - 2\frac{1^{\backslash 5}}{3}y - \frac{1}{15}y =\]
\[= \left( 3\frac{9}{15} - 2\frac{5}{15} - \frac{1}{15} \right)y =\]
\[= 1\frac{3}{15}y = 1\frac{1}{5}y\]
\[y = 10:\]
\[\boxed{\mathbf{360\ (c).}\mathbf{\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 3\frac{3^{\backslash 3}}{5}y - 2\frac{1^{\backslash 5}}{3}y - \frac{1}{15}y =\]
\[= \left( 3\frac{9}{15} - 2\frac{5}{15} - \frac{1}{15} \right)y =\]
\[= 1\frac{3}{15}y = 1\frac{1}{5}y\]
\[y = 10:\]
\[2)\ \frac{9^{\backslash 3}}{10}c - \frac{2^{\backslash 2}}{15}c - \frac{3^{\backslash 6}}{5}c =\]
\[= \frac{27 - 4 - 18}{30}c = \frac{5}{30}c = \frac{1}{6}c\]
\[c = 2,4 = \frac{24}{10} = \frac{12}{5}:\]
\[3)\ \frac{3^{\backslash 9}}{8}x + \frac{4^{\backslash 8}}{9}x - \frac{5^{\backslash 6}}{12}x =\]
\[= \frac{27 + 32 - 30}{72}x = \frac{29}{72}x\]
\[x = 3\frac{3}{29} = \frac{90}{29}:\]
\[\boxed{\mathbf{360}\mathbf{.}}\]
\[1)\ \frac{1}{7}x = \frac{5}{6}\]
\[x = \frac{5}{6}\ :\frac{1}{7}\]
\[x = \frac{5}{6} \cdot 7\]
\[x = \frac{35}{6}\]
\[x = 5\frac{5}{6}.\]
\[2)\ \frac{4}{15}\ :x = 8\]
\[x = \frac{4}{15}\ :8\]
\[x = \frac{4}{15} \cdot \frac{1}{8}\]
\[x = \frac{1}{30}.\]
\[3)\ 1\frac{4}{9}x = 5\frac{1}{5}\]
\[x = \frac{26}{5}\ :\frac{13}{9}\]
\[x = \frac{26}{5} \cdot \frac{9}{13}\]
\[x = \frac{26 \cdot 9}{5 \cdot 13}\]
\[x = \frac{18}{5}\]
\[x = 3\frac{3}{5}.\]