\[\boxed{\mathbf{359\ (359).}\mathbf{\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\frac{2^{\backslash 8}}{3}a + \frac{5^{\backslash 3}}{8}a + \frac{1^{\backslash 4}}{6}a =\]
\[= \frac{16 + 15 + 4}{24}a = \frac{35}{24}a = 1\frac{11}{24}a\]
\[2)\frac{4^{\backslash 3}}{5}b - \frac{2^{\backslash 5}}{3}b + \frac{4}{15}b =\]
\[= \frac{12 - 10 + 4}{15}b = \frac{6}{15}b = \frac{2}{5}b\]
\[3)\frac{2^{\backslash 14}}{5}x + \frac{4^{\backslash 10}}{7}x - \frac{5^{\backslash 5}}{14}x =\]
\[= \frac{28 + 40 - 25}{70}x = \frac{43}{70}x\]
\[4)\frac{7^{\backslash 4}}{12}y - \frac{3^{\backslash 3}}{16}y + \frac{5^{\backslash 2}}{24}y =\]
\[= \frac{28 - 9 + 10}{48}y = \frac{29}{48}y\]
\[5)\frac{5^{\backslash 8}}{7}m + \frac{3^{\backslash 14}}{4}m - \frac{5^{\backslash 7}}{8}m =\]
\[= \frac{40 + 42 - 35}{56}m = \frac{47}{56}m\]
\[6)\frac{11}{15}c - \frac{5}{18}c - 0,4c =\]
\[= \frac{11}{15}c - \frac{5}{18}c - \frac{4}{10}c =\]
\[= \frac{11^{\backslash 6}}{15}c - \frac{5^{\backslash 5}}{18}c - \frac{2^{\backslash 18}}{5}c =\]
\[= \frac{66 - 25 - 36}{90}c = \frac{5}{90}c = \frac{1}{18}c\]
\[\boxed{\mathbf{359}\mathbf{.}}\]
\[1)\ \frac{5}{12}x = \frac{1}{6}\]
\[x = \frac{1}{6}\ :\frac{5}{12}\]
\[x = \frac{1}{6} \cdot \frac{12}{5}\]
\[x = \frac{2}{5}.\]
\[2)\ \frac{7}{16}\ :x = \frac{3}{4}\]
\[x = \frac{7}{16}\ :\frac{3}{4}\]
\[x = \frac{7}{16} \cdot \frac{4}{3}\]
\[x = \frac{7 \cdot 1}{4 \cdot 3}\]
\[x = \frac{7}{12}.\]
\[3)\ \frac{13}{17}x = 39\]
\[x = 39\ :\frac{13}{17}\]
\[x = 39 \cdot \frac{17}{13}\]
\[x = 3 \cdot 17\]
\[x = 51.\]
\[4)\ x\ :\frac{8}{27} = 18\]
\[x = 18 \cdot \frac{8}{27}\]
\[x = \frac{2 \cdot 8}{3} = \frac{16}{3}\]
\[x = 5\frac{1}{3}.\]