\[\boxed{\mathbf{287\ (288)}\mathbf{.}\mathbf{\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{2^{\backslash 2}}{9} + \frac{5^{\backslash 3}}{6} = \frac{4 + 15}{18} = \frac{19}{18} =\]
\[= 1\frac{1}{18}\ (С)\ \]
\[2)\ 1^{\backslash 17} - \frac{5}{17} = \frac{17 - 5}{17} = \frac{12}{17}\ \ \ (Т)\]
\[3)\ 6 - 1\frac{4}{9} = 5\frac{9}{9} - 1\frac{4}{9} = 4\frac{5}{9}\ \ \ (Е)\]
\[4)\ 2\frac{1^{\backslash 2}}{3} - 1\frac{1^{\backslash 3}}{2} = 2\frac{2}{6} - 1\frac{3}{6} =\]
\[= 1\frac{8}{6} - 1\frac{3}{6} = \frac{5}{6}\ \ (К)\]
\[5)\ 1\frac{1^{\backslash 4}}{7} + 2\frac{3}{28} = 1\frac{4}{28} + 2\frac{3}{28} =\]
\[= 3\frac{7}{28} = 3\frac{1}{4}\ \ (Л)\]
\[6)\ \ 5\frac{1^{\backslash 2}}{6} - 4\frac{1^{\backslash 3}}{4} = 5\frac{2}{12} - 4\frac{3}{12} =\]
\[= 4\frac{14}{12} - 4\frac{3}{12} = \frac{11}{12}\ \ (О)\]
\[7)\ \frac{1^{\backslash 3}}{4} + \frac{1}{12} + \frac{2^{\backslash 4}}{3} = \frac{3 + 1 + 8}{12} =\]
\[= \frac{12}{12} = 1\ \ (В)\]
\[\boxed{\mathbf{287\ (}\mathbf{с}\mathbf{)}\mathbf{.}\mathbf{\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Скорость\ катера - ?\ \]
\[Скорость\ течения - 1\frac{4}{9}\ \frac{км}{ч}\]
\[Скорость\ по\ течению -\]
\[27\frac{1}{3}\ \frac{км}{ч}\]
\[Скорость\ против\ течения - ?\]
Решение.
\[1)\ 27\frac{1^{\backslash 3}}{3} - 1\frac{4}{9} = 27\frac{3}{9} - 1\frac{4}{9} =\]
\[= 26\frac{12}{9} - 1\frac{4}{9} = 25\frac{8}{9}\ (\frac{км}{ч) -}\]
\[собственная\ скорость\ катера.\]
\[2)\ 25\frac{8}{9} - 1\frac{4}{9} = 24\frac{4}{9}\ (\frac{км}{ч) -}\]
\[скорость\ катера\ против\ \]
\[течения.\]
\[Ответ:\ \ 25\frac{8}{9}\ \frac{км}{ч - \ \ }\ \]
\[собственная\ скорость;\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ 24\frac{4}{9}\ \frac{км}{ч - скорость\ }\]
\[против\ течения.\]
\[\boxed{\mathbf{287}\mathbf{.}}\]
\[1)\ CDKM;ABCD;BCMF.\]
\[2)\ BC = AD;EK;FM.\]
\[3)\ ABFE;ADKE.\]
\[4)\ BFMC = AEKD.\]