\[\boxed{\mathbf{211\ }\left( \mathbf{211} \right)\mathbf{.}\mathbf{\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
Пояснение.
Решение.
\[1)\ \frac{3}{12} = \frac{3\ :3}{12\ :3} = \frac{1}{4}\]
\[2)\ \frac{4}{12} = \frac{4\ :4}{12\ :4} = \frac{1}{3}\]
\[3)\ \frac{6}{54} = \frac{6\ :6}{54\ :6} = \frac{1}{9}\]
\[4)\ \frac{25}{70} = \frac{25\ :5}{70\ :5} = \frac{5}{14}\]
\[5)\ \frac{26}{65} = \frac{26\ :13}{65\ :13} = \frac{2}{5}\]
\[6)\ \frac{12}{60} = \frac{12\ :12}{60\ :12} = \frac{1}{5}\]
\[7)\ \frac{36}{48} = \frac{36\ :12}{48\ :12} = \frac{3}{4}\]
\[8)\ \frac{35}{105} = \frac{35\ :35}{105\ :35} = \frac{1}{3}\]
\[9)\ \frac{480}{720} = \frac{480\ :10}{720\ :10} = \frac{48}{72} =\]
\[= \frac{48\ :24}{72\ :24} = \frac{2}{3}\]
\[10)\ \frac{204}{306} = \frac{204\ :102}{306\ :102} = \frac{2}{3}\]
\[\boxed{\mathbf{211}\mathbf{.}}\]
\[\angle BOC = x;\]
\[\angle AOC = (x + 38{^\circ});\]
\[\angle AOB = 180{^\circ}.\]
\[x + x + 38 = 180\]
\[2x = 180 - 38\]
\[2x = 142\]
\[x = 142\ :2 = 71{^\circ} - \angle BOC.\]
\[\angle AOC = x + 38 = 71 + 38 =\]
\[= 109{^\circ}.\]
\[Ответ:71{^\circ}\ и\ 109{^\circ}.\]