\[\boxed{\mathbf{3.}\mathbf{199}}\]
Пояснение.
Решение.
\[\textbf{а)}\ 5 \cdot (4 + c) = 20 + 5c\]
\[5 \cdot 4 + 5 \cdot c = 20 + 5c\]
\[20 + 5c = 20 + 5c\]
\[c - любое\ число.\]
\[\textbf{б)}\ (4 + 5) \cdot c = 4c + 5c\]
\[4 \cdot c + 5 \cdot c = 4c + 5c\]
\[9c = 9c\]
\[c - любое\ число.\]
\[\textbf{в)}\ (c + 8) \cdot 5 = 7 \cdot 5 + 8 \cdot 5\]
\[c = 7.\]
\[\textbf{г)}\ (c + 4) \cdot 3 = 2 \cdot 3 + 4 \cdot 3\]
\[c \cdot 3 + 4 \cdot 3 = 2 \cdot 3 + 4 \cdot 3\]
\[c = 2.\]
\[\textbf{д)}\ (7 - 3) \cdot c = 7c - 3c\]
\[7 \cdot c - 3 \cdot c = 7c - 3c\]
\[4c = 4c\]
\[c - любое\ число.\]
\[\textbf{е)}\ (7 - 3) \cdot c = 7c - 3 \cdot 6\]
\[7 \cdot c - 3 \cdot c = 7 \cdot c - 3 \cdot 6\]
\[c = 6.\]