\[Стр.\ 45.\]
\[\boxed{\mathbf{3.}}\]
\[\textbf{а)}\ \frac{2}{3} + \frac{3}{4} = \frac{8}{12} + \frac{9}{12} = \frac{17}{12}\]
\[\textbf{б)}\ \frac{2}{15} + \frac{7}{10} = \frac{4}{30} + \frac{21}{30} = \frac{25}{30}\]
\[\textbf{в)}\ \frac{3}{16} + \frac{9}{20} = \frac{15}{80} + \frac{36}{80} = \frac{51}{80}\]
\[\textbf{г)}\ \frac{5}{8} + \frac{11}{12} = \frac{15}{24} + \frac{22}{24} = \frac{37}{24}\]
\[\textbf{д)}\ \frac{1}{2} - \frac{1}{3} = \frac{3}{6} - \frac{2}{6} = \frac{1}{6}\]
\[\textbf{е)}\ \frac{11}{36} - \frac{5}{18} = \frac{11}{36} - \frac{10}{36} = \frac{1}{36}\]
\[\textbf{ж)}\ \frac{9}{10} - \frac{7}{8} = \frac{36}{40} - \frac{35}{40} = \frac{1}{40}\]
\[\textbf{з)}\ \frac{7}{22} - \frac{3}{55} = \frac{35}{110} - \frac{6}{110} = \frac{29}{110}\]
\[\boxed{\mathbf{4.}}\]
\[\textbf{а)}\ \frac{7}{10} + \frac{1}{10} = \frac{8}{10} = \frac{4}{5}\]
\[\textbf{б)}\ \frac{7}{12} + \frac{1}{4} = \frac{7}{12} + \frac{3}{12} = \frac{10}{12} = \frac{5}{6}\]
\[\textbf{в)}\ \frac{1}{5} + \frac{2}{15} = \frac{3}{15} + \frac{2}{15} = \frac{5}{15} = \frac{1}{3}\]
\[\textbf{г)}\ \frac{5}{6} + \frac{1}{9} = \frac{15}{18} + \frac{2}{18} = \frac{17}{18}\]
\[\textbf{д)}\ \frac{2}{9} + \frac{1}{12} = \frac{8}{36} + \frac{3}{36} = \frac{11}{36}\]
\[\textbf{е)}\ \frac{7}{24} + \frac{1}{60} = \frac{35}{120} + \frac{2}{120} = \frac{37}{120}\]
\[\textbf{ж)}\ \frac{1}{42} + \frac{2}{63} = \frac{3}{126} + \frac{4}{126} =\]
\[= \frac{7}{126} = \frac{1}{18}\]
\[\textbf{з)}\ \frac{5}{12} + \frac{3}{20} = \frac{25}{60} + \frac{9}{60} = \frac{34}{60} =\]
\[= \frac{17}{30}\]
\[\boxed{\mathbf{5.}}\]
\[\textbf{а)}\ \frac{7}{8} - \frac{3}{4} = \frac{7}{8} - \frac{6}{8} = \frac{1}{8}\]
\[\textbf{б)}\ \frac{9}{10} - \frac{2}{5} = \frac{9}{10} - \frac{8}{10} = \frac{1}{10}\]
\[\textbf{в)}\ \frac{3}{5} - \frac{4}{15} = \frac{9}{15} - \frac{4}{15} = \frac{5}{15} = \frac{1}{3}\]
\[\textbf{г)}\ \frac{7}{8} - \frac{6}{7} = \frac{49}{56} - \frac{48}{56} = \frac{1}{56}\]
\[\textbf{д)}\ \frac{7}{12} - \frac{8}{15} = \frac{35}{60} - \frac{32}{60} = \frac{3}{60} =\]
\[= \frac{1}{20}\]
\[\textbf{е)}\ \frac{25}{39} - \frac{15}{26} = \frac{50}{78} - \frac{45}{78} = \frac{5}{78}\]
\[\textbf{ж)}\ \frac{7}{15} - \frac{8}{25} = \frac{35}{75} - \frac{24}{75} = \frac{11}{75}\]
\[\textbf{з)}\ \frac{7}{45} - \frac{7}{60} = \frac{28}{180} - \frac{21}{180} = \frac{7}{180}\]