\[\boxed{\mathbf{1.}}\]
\[4 + \frac{2}{3} = 4\frac{2}{3}\]
\[\frac{3}{11} + \frac{7}{11} = \frac{10}{11}\]
\[1 - \frac{5}{8} = \frac{3}{8}\]
\[5\frac{8}{9} - 3\frac{1}{9} = 2\frac{7}{9}\]
\[4\frac{7}{12} + 2\frac{5}{12} = 6\frac{12}{12} = 7\]
\[3\frac{9}{16} + 1\frac{11}{16} = 4\frac{20}{16} = 5\frac{4}{16}\]
\[8\frac{1}{5} - 6\frac{4}{5} = 7\frac{6}{5} - 6\frac{4}{5} = 1\frac{2}{5}\]
\[\boxed{\mathbf{2.}}\]
\[\textbf{а)}\ \frac{17}{5} = 3\frac{2}{5}\]
\[\textbf{б)}\ 2\frac{1}{7} = \frac{15}{7}\]
\[\boxed{\mathbf{3.}}\]
\[\left( 3\frac{4}{7} - x \right) + 2\frac{1}{7} = 5\]
\[3\frac{4}{7} - x = 5 - 2\frac{1}{7}\]
\[3\frac{4}{7} - x = 4\frac{7}{7} - 2\frac{1}{7}\]
\[3\frac{4}{7} - x = 2\frac{6}{7}\]
\[x = 3\frac{4}{7} - 2\frac{6}{7}\]
\[x = 2\frac{11}{7} - 2\frac{6}{7}\]
\[x = \frac{5}{7}.\]
\[\boxed{\mathbf{4.}}\]
\[1 - вся\ книга.\]
\[1)\ 1 - \left( \frac{3}{16} + \frac{7}{16} \right) = \frac{16}{16} - \frac{10}{16} =\]
\[= \frac{6}{16}\ (часть) - книги\ занимает\ \]
\[третий\ рассказ.\]
\[2)\ 30\ :6 \cdot 16 = 80\ (страниц) -\]
\[в\ книге.\]
\[3)\ 80\ :16 \cdot 3 = 15\ (страниц) -\]
\[занимает\ первый\ рассказ.\]
\[4)\ 80\ :16 \cdot 7 = 35\ (страниц) -\]
\[занимает\ второй\ рассказ.\]
\[Ответ:80\ страниц;\]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }15\ и\ 35\ страниц.\]
\[\boxed{\mathbf{5.}}\]
\[43\ 025 - x\ :840\]
\[При\ \ x = 427\ 560:\]
\[43\ 025 - 427\ 560\ :840 =\]
\[= 43\ 025 - 42\ 756\ :84 =\]
\[= 42\ 516.\]
\[\boxed{\mathbf{6.}}\]
\[(a - a\ :100 \cdot 40)\ :5\ \left( \frac{км}{ч} \right) -\]
\[должна\ быть\ скорость\ поезда.\]
\[\boxed{\mathbf{7.}}\]
\[2,\ 20,\ 220,\ 2400,\ 26\ 000,\ 280\ 000.\]