Решебник по геометрии 9 класс Атанасян ФГОС Задание 881

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 881

Выбери издание
Геометрия 9 класс Атанасян ФГОС Просвещение
 
фгос Геометрия 9 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 9 класс Атанасян ФГОС Просвещение

\[\boxed{\mathbf{881.ОК\ ГДЗ - домашка\ на}\ 5}\]

\[Рисунок\ по\ условию\ задачи:\]

\[\mathbf{Дано:}\]

\[Окружность\ (O;R);\]

\[OA = R;\]

\[BD - касатель;\]

\[OB\bot BD;\]

\[AD\bot BD.\]

\[\mathbf{Доказать:}\]

\[\frac{AB^{2}}{\text{AD}} = const.\]

\[\mathbf{Доказательство.}\]

\[1)\ Пусть\ \text{A\ }не\ лежит\ на\ \]

\[диаметре,\ проведем\ диаметр\ \]

\[\text{BC.}\ \]

\[2)\ \angle ABD = \frac{1}{2} \cup AB = \angle ACB.\]

\[3)\ \mathrm{\Delta}BAC - прямоугольный,\ \]

\[так\ как\ \angle\text{CAB\ }опирается\ на\ \]

\[диаметр:\]

\[\angle A = 90{^\circ};\]

\[4)\ \mathrm{\Delta}\text{ADB\ }и\ \mathrm{\Delta}BAC -\]

\[прямоугольные;\ \ \mathrm{\Delta}ADB\sim\mathrm{\Delta}BAC\ \]

\[(по\ двум\ углам):\]

\[\angle ABD = \angle BCA.\ \]

\[Отсюда:\]

\[\frac{\text{AD}}{\text{AB}} = \frac{\text{AB}}{\text{BC}}\]

\[\frac{AB^{2}}{\text{AD}} = BC = 2r.\]

\[5)\ A\ лежит\ на\ диаметре \Longrightarrow\]

\[\Longrightarrow AD = AB = 2r:\]

\[\frac{AB^{2}}{\text{AD}} = 2r.\]

\[6)\ \frac{AB^{2}}{\text{AD}} = 2r \Longrightarrow \ постоянно\ \]

\[равно\ диаметру.\]

\[Что\ и\ требовалось\ доказать.\]

Издание 2
фгос Геометрия 9 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{881.еуроки - ответы\ на\ пятёрку}}\]

\[\mathbf{Дано:}\]

\[ABCD - параллелограмм;\]

\[N \in CD;\]

\[M = AN \cap BD;\]

\[P = AN \cap BC.\]

\[\mathbf{Доказать:}\]

\[AM = \sqrt{MN \bullet MP}.\]

\[\mathbf{Доказательство.}\]

\[1)\ Пусть\ AB = CD = a;\ \]

\[\ AD = BC = b.\]

\[2)\ \mathrm{\Delta}BAM\sim\mathrm{\Delta}DNM\ (по\ двум\ углам):\]

\[\frac{\text{AM}}{\text{MN}} = \frac{\text{AB}}{\text{ND}}\ \]

\[\frac{\text{AM}}{\text{MN}} = \frac{a}{a + NC}\]

\[\frac{\text{NC}}{a} + 1 = \frac{\text{MN}}{\text{AM}}.\]

\[3)\ \mathrm{\Delta}BMP\sim\mathrm{\Delta}DMA\ (по\ двум\ углам):\]

\[\frac{\text{BP}}{\text{AD}} = \frac{\text{MP}}{\text{AM}};\ \ \]

\[MP = \frac{\text{BP}}{b}AM = \frac{b - PC}{b}AM =\]

\[= \left( 1 - \frac{\text{PC}}{b} \right)\text{AM.}\]

\[4)\ PC \parallel AD\ (по\ теореме\ Фалеса):\]

\[\frac{\text{AP}}{\text{NP}} = \frac{\text{CD}}{\text{NC}} = \frac{a}{\text{NC}};\ \ \ \]

\[\frac{\text{AP}}{\text{NP}} = \frac{a}{\text{NC}};\ \ \]

\[\ \frac{\text{NC}}{a} = \frac{\text{NP}}{\text{AP}};\]

\[\frac{\text{PC}}{\text{AD}} = \frac{\text{NP}}{\text{AN}};\ \ \ \]

\[\frac{\text{PC}}{b} = \frac{\text{NP}}{\text{AN}}.\]

\[5)\ MP = \left( 1 - \frac{\text{PC}}{b} \right)AM =\]

\[= \left( 1 - \frac{\text{NP}}{\text{AN}} \right)AM =\]

\[= \frac{AN - NP}{\text{AN}}AM = \frac{\text{AP}}{\text{AN}}\text{AM.}\]

\[\frac{\text{NP}}{\text{AP}} + 1 = \frac{\text{MN}}{\text{AM}};\ \ \ \]

\[\frac{NP + AP}{\text{AP}} = \frac{\text{MN}}{\text{AM}};\ \ \ \]

\[\frac{\text{AN}}{\text{AP}} = \frac{\text{MN}}{\text{AM}}\]

\[\frac{\text{MN}}{\text{AM}} = \frac{\text{AN}}{\text{AP}} = \frac{\text{AM}}{\text{MP}}\]

\[AM^{2} = MN \bullet MP\]

\[AM = \sqrt{MN \bullet MP}.\]

\[\mathbf{Что\ и\ требовалось\ доказать.}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам