Решебник по геометрии 9 класс Атанасян ФГОС Задание 784

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 784

Выбери издание
Геометрия 9 класс Атанасян ФГОС Просвещение
 
фгос Геометрия 9 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 9 класс Атанасян ФГОС Просвещение

\[\boxed{\mathbf{784.}\mathbf{ОК\ ГДЗ - домашка\ на}\ 5}\]

\[Рисунок\ по\ условию\mathbf{\ задачи:}\]

\[\mathbf{Дано:}\]

\[ABCD - параллелограмм;\]

\[BD \cap AC = 0;\]

\[AM = \frac{1}{2}MD;\]

\[\overrightarrow{x} = \overrightarrow{\text{AD}};\ \ \]

\[\overrightarrow{y} = \overrightarrow{\text{AB}}.\]

\[\mathbf{Выразить:}\]

\[\textbf{а)}\ \ \overrightarrow{\text{AC}};\ \overrightarrow{\text{AO}};\overrightarrow{\text{CO}};\overrightarrow{\text{DO}};\]

\[\overrightarrow{\text{AD}} + \overrightarrow{\text{BC}};\overrightarrow{\text{AD}} + \overrightarrow{\text{CO}};\overrightarrow{\text{CO}} + \overrightarrow{\text{OA}}.\]

\[\textbf{б)}\ \overrightarrow{\text{AM}};\overrightarrow{\text{MC}};\overrightarrow{\text{BM}};\overrightarrow{\text{OM}}.\]

\[\mathbf{Решение.}\]

\[ABCD - параллелограмм:\]

\[AB = CD\ \ и\ \ BC = AD;\]

\[BO = OD\ \ и\ \ AO = OC.\]

\[По\ условию:\ \]

\[AM = \frac{1}{2} \bullet MD \Longrightarrow\]

\[\Longrightarrow AM\ :MD = 1\ :2.\ \]

\[\textbf{а)}\ 1)\ \overrightarrow{\text{AC}} = \overrightarrow{\text{AD}} + \overrightarrow{\text{DC}} =\]

\[= \overrightarrow{\text{AD}} + \overrightarrow{\text{AB}} = \overrightarrow{x} + \overrightarrow{y}.\]

\[2)\ \overrightarrow{\text{AO}} = \frac{1}{2}\overrightarrow{\text{AC}} = \frac{1}{2} \bullet \left( \overrightarrow{x} + \overrightarrow{y} \right) =\]

\[= \frac{1}{2}\overrightarrow{x} + \frac{1}{2}\overrightarrow{y}.\]

\[3)\ \overrightarrow{\text{CO}} = - \overrightarrow{\text{OC}} = - \overrightarrow{\text{AO}} =\]

\[= - \left( \frac{1}{2}\overrightarrow{x} + \frac{1}{2}\overrightarrow{y} \right) = - \frac{1}{2}\overrightarrow{x} - \frac{1}{2}\overrightarrow{y}.\]

\[4)\ \overrightarrow{\text{DO}} = \overrightarrow{\text{DA}} + \overrightarrow{\text{AO}} =\]

\[= - \overrightarrow{\text{AD}} + \overrightarrow{\text{AO}} = - \overrightarrow{x} + \frac{1}{2}\overrightarrow{x} + \frac{1}{2}\overrightarrow{y} =\]

\[= - \frac{1}{2}\overrightarrow{x} + \frac{1}{2}\overrightarrow{y}.\]

\[5)\ \overrightarrow{\text{AD}} + \overrightarrow{\text{BC}} = \overrightarrow{\text{AD}} + \overrightarrow{\text{AD}} =\]

\[= 2\overrightarrow{\text{AD}} = 2\overrightarrow{x}.\]

\[6)\ \overrightarrow{\text{AD}} + \overrightarrow{\text{CO}} = \overrightarrow{x} - \frac{1}{2}\overrightarrow{x} - \frac{1}{2}\overrightarrow{y} =\]

\[= \frac{1}{2}\overrightarrow{x} - \frac{1}{2}\overrightarrow{y}.\]

\[7)\ \overrightarrow{\text{CO}} + \overrightarrow{\text{OA}} = \overrightarrow{\text{CA}} = - \overrightarrow{\text{AC}} =\]

\[= - \left( \overrightarrow{x} + \overrightarrow{y} \right) = - \overrightarrow{x} - \overrightarrow{y}.\]

\[\textbf{б)}\ 1)\ \overrightarrow{\text{AM}} = \frac{1}{3}\overrightarrow{\text{AD}} = \frac{1}{3}\overrightarrow{x}.\]

\[2)\ \overrightarrow{\text{MC}} = \overrightarrow{\text{MD}} + \overrightarrow{\text{DC}} =\]

\[= \frac{2}{3}\overrightarrow{\text{AD}} + \left( \overrightarrow{\text{AB}} \right) = \frac{2}{3}\overrightarrow{x} + \overrightarrow{y}.\]

\[3)\ \overrightarrow{\text{BM}} = \overrightarrow{\text{BA}} + \overrightarrow{\text{AM}} =\]

\[= - \overrightarrow{\text{AB}} + \overrightarrow{\text{AM}} = - \overrightarrow{\text{AB}} + \frac{1}{3}\overrightarrow{\text{AD}} =\]

\[= - \overrightarrow{y} + \frac{1}{3}\overrightarrow{x}.\]

\[4)\ \ \overrightarrow{\text{OM}} = \overrightarrow{\text{OA}} + \overrightarrow{\text{AM}} =\]

\[= - \overrightarrow{\text{AO}} + \frac{1}{3}\overrightarrow{\text{AD}} =\]

\[= - \frac{1}{2}\overrightarrow{x} - \frac{1}{2}\overrightarrow{y} + \frac{1}{3}\overrightarrow{x} = - \frac{1}{6}\overrightarrow{x} - \frac{1}{2}\overrightarrow{y}.\]

Издание 2
фгос Геометрия 9 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{784.еуроки - ответы\ на\ пятёрку}}\]

\[Рисунок\ по\ условию\ задачи:\]

\[\mathbf{Дано:}\]

\[ABCD - четырехугольник;\]

\[четыреугол;\]

\[AB + CD = 15.\]

\[\mathbf{Найти:}\]

\[P_{\text{ABCD}} - ?\]

\[\mathbf{Решение.}\]

\[1)\ В\ \text{ABCD\ }можно\ вписать\ \]

\[окружность:\]

\[AB + CD = BC + AD\ \]

\[(по\ свойству\ вписанной\ \]

\[окружности\ в\ \ \]

\[четырехугольник).\]

\[2)\ P_{\text{ABCD}} =\]

\[= AB + BC + CD + AD =\]

\[= (AB + CD) \bullet 2 = 15 \bullet 2 =\]

\[= 30\ см.\]

\[Ответ:P_{\text{ABCD}} = 30\ см.\ \]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам