Решебник по геометрии 9 класс Атанасян ФГОС Задание 1002

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 1002

Выбери издание
Геометрия 9 класс Атанасян ФГОС Просвещение
 
фгос Геометрия 9 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 9 класс Атанасян ФГОС Просвещение

\[\boxed{\mathbf{1002.ОК\ ГДЗ - домашка\ на}\ 5}\]

\[Рисунок\ по\ условию\ задачи:\]

\[\mathbf{Дано:}\]

\[Окружность\ (O;R);\]

\[A,B,C \in (O;R);\]

\[\textbf{а)}\ A(1; - 4);B(4;5);C(3; - 2);\]

\[\textbf{б)}\ A(3; - 7);B(8; - 2);C(6;2).\]

\[\mathbf{Найти:}\]

\[уравнение\ окружности.\]

\[\mathbf{Решение.}\]

\[\textbf{а)}\ 1)\ AO =\]

\[= \sqrt{(1 - x)^{2} + ( - 4 - y)^{2}};\]

\[BO = \sqrt{(4 - x)^{2} + (5 - y)^{2}};\]

\[CO = \sqrt{(3 - x)^{2} + ( - 2 - y)^{2}}.\]

\[2)\ AO^{2} = BO^{2}:\]

\[(1 - x)^{2} + ( - 4 - y)^{2} =\]

\[= (4 - x)^{2} + (5 - y)^{2}\]

\[1 - 2x + x^{2} + 16 + 8y + y^{2} =\]

\[= 16 - 8x + x^{2} + 25 - 10y + y^{2}\]

\[6x + 18y - 24 = 0\]

\[x + 3y - 4 = 0\]

\[x = 4 - 3y.\]

\[BO^{2} = CO^{2}:\]

\[(4 - x)^{2} + (5 - y)^{2} =\]

\[= (3 - x)^{2} + ( - 2 - y)^{2}\]

\[16 - 8x + x^{2} + 25 - 10y + y^{2} =\]

\[= 9 - 6x + x^{2} + 4 + 4y + y^{2}\]

\[- 8x - 10y + 41 + 6x - 4y - 13 =\]

\[= 0\]

\[- 14y - 2x + 28 = 0\]

\[7y + x - 14 = 0\]

\[x = 14 - 7y.\]

\[3)\ 14 - 7y = 4 - 3y\]

\[4y = 10\]

\[y = \frac{5}{2} = 2,5;\]

\[x = 4 - 3 \bullet 2,5 = 4 - 7,5 = - 3,5;\]

\[O( - 3,5;2,5).\]

\[4)\ R =\]

\[= \sqrt{(4 + 3,5)^{2} + (5 - 2,5)^{2}} =\]

\[= \sqrt{\frac{225}{4} + \frac{25}{4}} = \sqrt{\frac{250}{4}} =\]

\[= \sqrt{\frac{125}{2}} = \sqrt{62,5}.\]

\[5)\ Уравнение\ окружности:\]

\[(x + 3,5)^{2} + (y - 2,5)^{2} = 62,5.\]

\[\textbf{б)}\ 1)\ AO =\]

\[= \sqrt{(3 - x)^{2} + ( - 7 - y)^{2}};\]

\[BO = \sqrt{(8 - x)^{2} + ( - 2 - y)^{2}};\]

\[CO = \sqrt{(6 - x)^{2} + (2 - y)^{2}}.\]

\[2)\ AO^{2} = BO^{2}:\]

\[(3 - x)^{2} + ( - 7 - y)^{2} =\]

\[= (8 - x)^{2} + ( - 2 - y)^{2}\]

\[9 - 6x + x^{2} + 49 + 14y + y^{2} =\]

\[= 64 - 16x + x^{2} + 4 + 4y + y^{2}\]

\[- 6x + 14y + 58 + 16x - 4y - 68 =\]

\[= 0\]

\[10x + 10y - 10 = 0\]

\[x + y - 1 = 0\]

\[x = 1 - y.\]

\[BO^{2} = CO^{2}:\]

\[(8 - x)^{2} + ( - 2 - y)^{2} =\]

\[= (6 - x)^{2} + (2 - y)^{2}\]

\[64 - 16x + x^{2} + 4 + 4y + y^{2} =\]

\[= 36 - 12x + x^{2} + 4 - 4y + y^{2}\]

\[- 16x + 4y + 68 + 12x + 4y - 40 =\]

\[= 0\]

\[8y - 4x + 28 = 0\]

\[2y - x + 7 = 0\]

\[x = 2y + 7.\]

\[3)\ 2y + 7 = 1 - y\]

\[3y = - 6\]

\[y = - 2;\]

\[x = 2 \bullet ( - 2) + 7 = - 4 + 7 = 3;\]

\[O(3; - 2).\]

\[4)\ R = \sqrt{(6 - 3)^{2} + (2 + 2)^{2}} =\]

\[= \sqrt{9 + 16} = \sqrt{25} = 5.\]

\[5)\ Уравнение\ окружности:\]

\[(x - 3)^{2} + (y + 2)^{2} = 25.\]

\[Ответ:\]

\[\textbf{а)}\ (x + 3,5)^{2} + (y - 2,5)^{2} =\]

\[= 62,5;\]

\[\textbf{б)}\ (x - 3)^{2} + (y + 2)^{2} = 25.\]

Издание 2
фгос Геометрия 9 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{1002.еуроки - ответы\ на\ пятёрку}}\]

\[Рисунок\ по\ условию\ задачи:\]

\[\mathbf{Дано:}\]

\[ABCD - параллелограмм;\]

\[AM\ :MC = 4\ :1;\]

\[M \in AC.\]

\[\mathbf{Найти:}\]

\[\overrightarrow{\text{AM}}\ по\ \frac{\overrightarrow{a} = \overrightarrow{\text{AB}}}{\overrightarrow{b} = \overrightarrow{\text{AD}}}.\]

\[\mathbf{Решение.}\]

\[\overrightarrow{\text{AM}} \uparrow \uparrow \overrightarrow{\text{AC}};\left| \overrightarrow{\text{AM}} \right| = \frac{4}{5}\left| \overrightarrow{\text{AC}} \right|:\]

\[Следовательно:\ \]

\[\overrightarrow{\text{AM}} = \frac{4}{5}\left( \overrightarrow{\text{AB}} + \overrightarrow{\text{AD}} \right) = \frac{4}{5}\left( \overrightarrow{a} + \overrightarrow{b} \right).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам