\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - равнобедренный;\]
\[AC = 16\ см;\]
\[AB = BC = 10\ см.\]
\[Найти:\]
\[R_{опис.\ окр}.\]
\[Решение.\]
\[320\cos{\angle A} = 256\ \ \]
\[\cos{\angle A} = \frac{4}{5}.\]
\[\sin{\angle A} = \sqrt{1 - \cos^{2}{\angle A}};\]
\[\sin{\angle A} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5}.\]
\[R = \frac{\text{BC}}{2\sin{\angle A}} = \frac{10}{2}\ :\frac{3}{5} = 5 \bullet \frac{5}{3} = \frac{25}{3}\ см.\]
\[Ответ:\ \ \frac{25}{3}\ см.\]