\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - вписанный;\]
\[AB = 3\ см;\]
\[BC = 4\ см;\]
\[CD = 5\ см;\]
\[AD = 6\ см.\]
\[Найти:\]
\[\text{AC.}\]
\[Решение.\]
\[1)\ \angle A + \angle C = \angle B + \angle D = 180{^\circ}\]
\[\angle B = 180{^\circ} - \angle D\]
\[\cos{\angle B} = - \cos{\angle D}.\]
\[2)\ В\ \mathrm{\Delta}ABC:\]
\[= 9 + 16 + 2 \bullet 3 \bullet 4 \bullet \cos{\angle D} =\]
\[= 25 + 24\cos{\angle D}\text{\ \ }\]
\[\cos{\angle D} = \frac{AC^{2} - 25}{24}.\]
\[3)\ В\ \mathrm{\Delta}ADC:\]
\[= 36 + 25 - 2 \bullet 6 \bullet 5 \bullet \frac{AC^{2} - 25}{24} =\]
\[= 61 - 2,5AC^{2} + 62,5;\]
\[3,5AC^{2} = 123,5\ \ \]
\[AC^{2} = \frac{247}{7}\]
\[AC = \sqrt{\frac{247}{7}}\ см.\]
\[Ответ:\ \ \sqrt{\frac{247}{7}}\ см.\]