\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - прямоугольный;\]
\[BD = BC;\ \angle C = 90{^\circ};\]
\[BD = AC = BC = a.\]
\[Найти:\]
\[\text{CD.}\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle C = 90{^\circ};\ \ \ \]
\[\angle B = \angle A = 45{^\circ};\]
\[\angle CBD = 180{^\circ} - \angle B = 135{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}CBD:\]
\[CD^{2} =\]
\[= BC^{2} + BD^{2} - 2BC \bullet BD\cos{\angle B} =\]
\[= a^{2} + a^{2} - 2 \bullet a \bullet a \bullet \left( - \frac{\sqrt{2}}{2} \right) =\]
\[= 2a^{2} + \sqrt{2}a^{2} = a^{2}\left( 2 + \sqrt{2} \right);\]
\[CD = a\sqrt{2 + \sqrt{2}}.\]
\[Ответ:\ \ a\sqrt{2 + \sqrt{2}}.\]