\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - прямоугольный;\]
\[\angle C = 90{^\circ};\]
\[AC = 20\ см;\]
\[BC = 15\ см;\]
\[BM = 4\ см.\]
\[Найти:\]
\[\text{CM.}\]
\[Решение:\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle BCA = 90{^\circ};\ \ \ \]
\[AB = \sqrt{AC^{2} + BC^{2}} =\]
\[= \sqrt{400 + 225} = \sqrt{625} = 25;\]
\[\cos{\angle B} = \frac{\text{BC}}{\text{AB}} = \frac{15}{25} = \frac{3}{5}.\]
\[2)\ В\ \mathrm{\Delta}BMC:\]
\[CM^{2} =\]
\[= BM^{2} + BC^{2} - 2BM \bullet BC\cos{\angle B} =\]
\[= 16 + 225 - 2 \bullet 4 \bullet 15 \bullet \frac{3}{5} =\]
\[= 241 - 72 = 169;\ \ \ \]
\[CM = 13\ см.\]
\[Ответ:\ \ 13\ см.\]