\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - прямоугольник;\]
\[AM - биссектриса\ \angle BAD;\]
\[BM = 10\ см;\]
\[MC = 14\ см.\]
\[Найти:\]
\[BE;\ DE.\]
\[Решение.\]
\[1)\ ABCD - прямоугольник:\]
\[\angle A = \angle B = 90{^\circ};\ \ \ \]
\[AD = BC;\]
\[BC = BM + MC = 24;\]
\[\angle BAM = \angle DAE = \frac{1}{2}\angle A = 45{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}ABM:\]
\[\angle B = 90{^\circ};\ \ \ \]
\[\angle A = 45{^\circ};\]
\[\angle M = 180{^\circ} - \angle B - \angle A = 45{^\circ};\]
\[AB = BM = 10.\]
\[3)\ В\ \mathrm{\Delta}ABD:\]
\[\angle A = 90{^\circ};\]
\[BD = \sqrt{AB^{2} + AD^{2}};\]
\[BD = \sqrt{100 + 576} = \sqrt{676} = 26.\]
\[4)\ \mathrm{\Delta}BEM\sim\mathrm{\Delta}DEA - по\ двум\ углам:\]
\[\angle BME = \angle DAE;\]
\[\angle BEM = \angle DEA - вертикальные.\]
\[Отсюда:\]
\[\frac{\text{DE}}{\text{BE}} = \frac{\text{AD}}{\text{BM}} = \frac{24}{10}\text{\ \ }\]
\[DE = \frac{24}{10}BE;\]
\[BD = DE + BE = 26;\]
\[\frac{24}{10}BE + BE = 26\]
\[\frac{34}{10}BE = 26\ \]
\[BE = \frac{130}{17}.\]
\[DE = \frac{24}{10} \bullet \frac{130}{17} = \frac{312}{17}.\]
\[Ответ:\ \ \frac{130}{17}\ см;\ \frac{312}{17}\ см.\]