\[Схематический\ рисунок.\]
\[Дано:\]
\[AB = 5\sqrt{3}\ см;\]
\[\angle A = 35{^\circ};\]
\[\angle B = 25{^\circ}.\]
\[Найти:\]
\[\cup AB;\ \]
\[\cup BC;\]
\[\cup AC.\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle C = 180{^\circ} - \angle A - \angle B = 120{^\circ};\]
\[R = \frac{\text{AB}}{2\sin{\angle C}} = \frac{5\sqrt{3}}{2\sin{120{^\circ}}} = 5.\]
\[2)\ Окружность:\]
\[C = 2\pi R = 2\pi \bullet 5 = 10\pi;\]
\[\cup AB = 2 \bullet 10\pi \bullet \frac{120{^\circ}}{360{^\circ}} = \frac{20\pi}{3};\]
\[\cup BC = 2 \bullet 10\pi \bullet \frac{35{^\circ}}{360{^\circ}} = \frac{35\pi}{18};\]
\[\cup AC = 2 \bullet 10\pi \bullet \frac{25{^\circ}}{360{^\circ}} = \frac{25\pi}{18}.\]
\[Ответ:\ \frac{20\pi}{3}\ см;\ \frac{35\pi}{18}\ см;\ \frac{25\pi}{18}\ см.\]