\[Схематический\ рисунок.\]
\[Дано:\]
\[ABC\ldots - правильный\]
\[восьмиугольник;\]
\[O - центр\ опис.\ окружности;\]
\[AB = a.\]
\[Найти:\]
\[AC;\ AD;\ AE.\]
\[Решение:\]
\[1)\ 8 \bullet \angle B = 6 \bullet 180{^\circ}\]
\[8 \bullet \angle B = 1080{^\circ}\ \ \ \]
\[\angle B = 135{^\circ}.\]
\[\angle D = \angle C = \angle B = 135{^\circ}.\]
\[2)\ AE - диаметр;\]
\[\angle ACE = \angle ADE = 90{^\circ}.\]
\[3)\ В\ \mathrm{\Delta}ABC:\]
\[AC^{2} = AB^{2} + BC^{2} - 2AB \bullet BC\cos{\angle B} =\]
\[= a^{2} + a^{2} - 2a \bullet a \bullet \cos{135{^\circ}} =\]
\[= 2a^{2} + 2a^{2} \bullet \frac{\sqrt{2}}{2} = a^{2}\left( 2 + \sqrt{2} \right);\]
\[AC = a\sqrt{2 + \sqrt{2}}.\]
\[4)\ В\ \mathrm{\Delta}ACE:\]
\[CE = AC = a\sqrt{2 + \sqrt{2}};\]
\[AE = \sqrt{AC^{2} + CE^{2}} =\]
\[= \sqrt{2a^{2}\ \left( 2 + \sqrt{2} \right)} =\]
\[= a\sqrt{4 + 2\sqrt{2}}.\]
\[5)\ В\ \mathrm{\Delta}ADE:\]
\[AD = \sqrt{AE^{2} - DE^{2}} =\]
\[= \sqrt{a^{2}\left( 4 + 2\sqrt{2} \right) - a^{2}} =\]
\[= \sqrt{a^{2}\left( 3 + 2\sqrt{2} \right)} =\]
\[= a\sqrt{2 + 2\sqrt{2} + 1} =\]
\[= a\sqrt{\left( \sqrt{2} + 1 \right)^{2}} = a\left( \sqrt{2} + 1 \right).\]
\[Ответ:\ \ a\sqrt{2 + \sqrt{2}};\ a\left( \sqrt{2} + 1 \right);\ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a}\sqrt{4 + 2\sqrt{2}}.\]