\[Схематический\ рисунок.\]
\[Дано:\]
\[O - центр\ окружности,\ \]
\[вписананной\ в\ \angle C;\]
\[OE = OF = r;\]
\[OC - бисс\ \angle C;\]
\[AB = 50\ см;\]
\[BC = 39\ см;\]
\[AC = 41\ см.\]
\[Найти:\]
\[\text{r.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle ACO = \angle BCO = \frac{1}{2}\angle C;\]
\[p = \frac{1}{2}(50 + 39 + 41) =\]
\[= \frac{1}{2} \bullet 130 = 65;\]
\[S_{\text{ABC}} = \sqrt{65(65 - 50)(65 - 39)(65 - 41)};\]
\[S_{\text{ABC}} = \sqrt{65 \bullet 15 \bullet 26 \bullet 24} =\]
\[= \sqrt{608\ 400} = 780\ см^{2}.\]
\[2)\ В\ \mathrm{\Delta}OAC:\]
\[S_{\text{OAC}} = \frac{1}{2}AC \bullet OF = \frac{41}{2}\text{r.}\]
\[3)\ В\ \mathrm{\Delta}OBC:\]
\[S_{\text{OBC}} = \frac{1}{2}BC \bullet OE = \frac{39}{2}r;\]
\[S_{\text{ABC}} = S_{\text{OAC}} + S_{\text{OBC}};\]
\[\frac{41}{2}r + \frac{39}{2}r = 780\]
\[80r = 1560\ \ \ \]
\[r = 19,5\ см.\]
\[Ответ:\ \ 19,5\ см.\]