\[Схематический\ рисунок.\]
\[Дано:\]
\[BM - высота;\]
\[CK - высота;\]
\[\angle A = 45{^\circ}.\]
\[Найти:\]
\[S_{\text{AMK}}\ :S_{\text{ABC}}.\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABM:\]
\[\angle AMB = 90{^\circ};\ \ \]
\[\cos{\angle A} = \frac{\text{AM}}{\text{AB}}.\]
\[2)\ В\ \mathrm{\Delta}ACK:\]
\[\angle AKC = 90{^\circ};\ \ \ \]
\[\cos{\angle A} = \frac{\text{AK}}{\text{AC}}.\]
\[3)\ В\ \mathrm{\Delta}ABC:\]
\[S_{\text{ABC}} = \frac{1}{2}AC \bullet AB \bullet \sin{\angle A}.\]
\[4)\ В\ \mathrm{\Delta}AMK:\]
\[S_{\text{AMK}} = \frac{1}{2}AK \bullet AM \bullet \sin{\angle A};\]
\[\frac{S_{\text{AMK}}}{S_{\text{ABC}}} = \frac{AK \bullet AM}{AC \bullet AB} = \cos^{2}{\angle A};\]
\[\frac{S_{\text{AMK}}}{S_{\text{ABC}}} = \cos^{2}{45{^\circ}} = \frac{1}{2}.\]
\(Ответ:\ \ 1\ :2.\)