\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - трапеция;\]
\[AC = 8\ см;\]
\[AB = CD;\]
\[\angle CAD = 38{^\circ};\]
\[\angle BAD = 72{^\circ}.\]
\[Найти:\]
\[1)\ AB,\ BC,\ AD;\]
\[2)\ R_{опис.\ окр.}.\]
\[Решение.\]
\[1)\ Рассмотрим\ ABCD:\]
\[\angle B = 180{^\circ} - \angle A =\]
\[= 180{^\circ} - 72{^\circ} = 108{^\circ};\]
\[\angle BAC = \angle A - \angle CAD =\]
\[= 72{^\circ} - 38{^\circ} = 34{^\circ};\]
\[\angle BCA = 180{^\circ} - \angle B - \angle BAC = 38{^\circ};\]
\[\angle C = \angle B = 108{^\circ};\ \ \ \]
\[\angle D = \angle A = 72{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}ABC:\]
\[AB = \frac{AC \bullet \sin{\angle BCA}}{\sin{\angle ABC}} =\]
\[= \frac{8 \bullet \sin{38{^\circ}}}{\sin{108{^\circ}}} \approx 5,2\ см;\]
\[BC = \frac{AC \bullet \sin{\angle BAC}}{\sin{\angle ABC}} =\]
\[= \frac{8 \bullet \sin{34{^\circ}}}{\sin{108{^\circ}}} \approx 4,7\ см.\]
\[3)\ В\ \mathrm{\Delta}ACD:\]
\[\angle ACD = \angle C - \angle BCA =\]
\[= 108{^\circ} - 38{^\circ} = 70{^\circ};\]
\[AD = \frac{AC \bullet \sin{\angle ACD}}{\sin{\angle ADC}} =\]
\[= \frac{8 \bullet \sin{70{^\circ}}}{\sin{72{^\circ}}} \approx 7,9\ см.\]
\[4)\ В\ \mathrm{\Delta}ABC:\]
\[R = \frac{\text{AC}}{2\sin{\angle ABC}} =\]
\[= \frac{8}{2 \bullet \sin{108{^\circ}}} = 4,2\ см.\]
\[Ответ:\ \ \]
\[1)\ 5,2\ см;\ 4,7\ см;\ 5,2\ см;\ 7,9\ см;\ \]
\[2)\ 4,2\ см.\]